

Personalised adaptive basal-bolus

algorithm using SMBG/CGM data

Q. Sun¹, M. V. Jankovic^{1,2}, C. Stettler³, S. Mougiakakou^{1,3}

¹ ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland

² Department of the Emergency Medicine, Bern University Hospital "Inselspital", Switzerland

³ Division of Endocrinology, Diabetes and Clinical Nutrition, Bern University Hospital "Inselspital", Switzerland

Coordinator: Stavroula Mougiakakou, Diabetes Technology Research, ARTORG Center University of Bern

A Mobile Platform for Personalization of Insulin Delivery based on a Patch Pump and Reinforcement Learning

Clinical partner:	Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, "Inselspital"
Industrial partner:	Debiotech S.A.
Starting date:	January 2016

Background and Aims

An essential component of the diabetes management plan is glucose monitoring using either meters for self-monitoring of blood glucose (SMBG) or more recently continuous glucose monitors (CGM). The main project's objective is the **personalisation of the basal and bolus insulin quantities** to be delivered by a pump **independent of the type of glucose monitoring device (SMBG or CGM)**. An algorithm, named **adaptive basal-bolus algorithm (ABBA)**, allows the daily adjustment of the insulin infusion profile.

Scientific Innovation and Results

The innovative approach is based on reinforcement learning (RL), a branch of artificial intelligence algorithms, that *allows the system to learn and improve its behaviour based on feedback from the environment.*

ABBA follows a model-free approach, while is initialised using the patient's CGM and pump data for a period of seven days. Then, ABBA estimates the daily adaptation of the basal rate and Carbohydrate to Insulin Ratio (CIR) for each of the main meals: breakfast, lunch, dinner without any external assistance by using either CGM or SMBG data (even with only four SMBG values / day).

- Self-learning strategy
- Low computational cost
- Integrated to mobile platform

Business Potential

	BG (mg/dL)	% in target	% in hypo	% in hyper	TDI (U)		
	(mean ± standard deviation)						
Adults							
ABBA _{CGM}	140.9 ± 18.4	87.5 ± 16.1	1.0 ± 1.1	11.5 ± 15.4	43.2 ± 10.8		
ABBA _{SMBG}	143.5 ± 18.9	86.9 ± 16.7	0.6 ± 0.9	12.5 ± 16.0	42.6 ± 9.9		
Adolescents							
ABBA _{CGM}	148.1 ± 11.5	75.7 ± 12.2	2.4 ± 2.0	21.9 ± 12.3	31.6 ± 6.7		
ABBA _{SMBG}	145.8 ± 9.3	77.8 ± 13.6	2.6 ± 2.2	19.6 ± 12.7	31.8 ± 7.1		
Children							
ABBA _{CGM}	149.3 ± 9.0	75.0 ± 9.8	1.8 ± 1.6	23.2 ± 8.8	15.9 ± 3.8		
ABBA _{SMBG}	150.5 ± 10.8	75.2 ± 12.4	1.1 ± 1.3	23.7 ± 11.5	15.9 ± 3.7		

In silico evaluated using a complex scenario characterized by a high degree of variabilities and uncertainties, achieved comparable performances for both CGM and SMBG versions, without affecting the total daily insulin dose.

<u>Market</u>

- In 2017, 12% of global health expenditure is spent on diabetes (USD 727 billion)
 1 in 11 adults had diabetes (425 million)
 - 1 in 2 adults with diabetes were undiagnosed (212 million)

In 2045, Diabetes-related health expenditure will exceed USD 776 billion
 1 in 10 adults will have diabetes (629 million)

The number of individuals with diabetes under insulin treatment is increasing

Our Solution

- Provides personalized basal-bolus insulin advice for diabetics using insulin treatment independent of the glucose monitoring system
- Targets individuals with both type 1 and type 2 diabetes (with type 2 being the larger market)

DEBIOTECH: Internal Market Analysis (March 2017)

Ь
UNIVERSITÄT
BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

INSELSPITAL

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

